A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system

نویسندگان

  • Yuanqing Li
  • Cuntai Guan
  • Huiqi Li
  • Zhengyang Chin
چکیده

In this paper, we first present a self-training semi-supervised support vector machine (SVM) algorithm and its corresponding model selection method, which are designed to train a classifier with small training data. Next, we prove the convergence of this algorithm. Two examples are presented to demonstrate the validity of our algorithm with model selection. Finally, we apply our algorithm to a data set collected from a P300-based brain computer interface (BCI) speller. This algorithm is shown to be able to significantly reduce training effort of the P300-based BCI speller. 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-training Algorithm for Channel Selection in P300-Based BCI Speller

In this paper, we address the important problem of channel selection for a P300-based brain computer interface (BCI) speller system in the situation of insufficient training data with labels. An iterative semi-supervised support vector machine (SVM) is proposed for time segment selection as well as classification, in which both labeled training data and unlabeled test data are utilized. The per...

متن کامل

Development of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals

BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...

متن کامل

سنجش عملکرد سامانه‌های رابط مغز و رایانه P300 Speller به‌ازای ماتریس نمایش ردیف و یا ستون (RCP) و نمایش حروف زبان فارسی

As a Brain computer interface system, BCI P300 Speller tries to help disabled people and patients to regain some of their lost ability with allowing communication via typing. The ability of personalization is one of the most important features in a BCI system, so the typing language as a personalization factor is an important feature in a BCI speller. Most prior researches on P300 Speller has f...

متن کامل

Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification

Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states.  Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...

متن کامل

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2008